The Coupled Stratosphere–Troposphere Response to Impulsive Forcing from the Troposphere

نویسندگان

  • THOMAS REICHLER
  • PAUL J. KUSHNER
  • LORENZO M. POLVANI
چکیده

A simple atmospheric general circulation model (GCM) is used to investigate the transient response of the stratosphere–troposphere system to externally imposed pulses of lower-tropospheric planetary wave activity. The atmospheric GCM is a dry, hydrostatic, global primitive-equations model, whose circulation includes an active polar vortex and a tropospheric jet maintained by baroclinic eddies. Planetary wave activity pulses are generated by a perturbation of the solid lower boundary that grow and decay over a period of 10 days. The planetary wave pulses propagate upward and break in the stratosphere. Subsequently, a zonal-mean circulation anomaly propagates downward, often into the troposphere, at lags of 30–100 days. The evolution of the response is found to be dependent on the state of the stratosphere– troposphere system at the time the pulse is generated. In particular, on the basis of a large ensemble of these simulations, it is found that the length of time the signal takes to propagate downward from the stratosphere is controlled by initial anomalies in the zonal-mean circulation and in the zonal-mean wave drag. Criteria based on these anomaly patterns can be used, therefore, to predict the long-term surface response of the stratosphere–troposphere system to a planetary wave pulse up to 90 days after the pulse is generated. In an independent test, it is verified that the initial states that most strongly satisfy these criteria respond in the expected way to the lower-tropospheric wave activity pulse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abrupt Circulation Responses to Tropical Upper-Tropospheric Warming in a Relatively Simple Stratosphere-Resolving AGCM

The circulation response of the atmosphere to climate change–like thermal forcing is explored with a relatively simple, stratosphere-resolving general circulation model. The model is forced with highly idealized physics, but integrates the primitive equations at resolution comparable to comprehensive climate models. An imposed forcing mimics the warming induced by greenhouse gasses in the low-l...

متن کامل

Energetic particle forcing of the Northern Hemisphere winter stratosphere: comparison to solar irradiance forcing

*Correspondence: Annika Seppälä, Earth Observation, Finnish Meteorological Institute, Erik Palmenin Aukio 1, FI-00560 Helsinki, Finland e-mail: [email protected] Variation in solar irradiance is considered an important factor in natural climate forcing. Variations in the solar UV in particular are now regarded as a major source of decadal variability in the stratosphere, influencing surface...

متن کامل

Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate

[1] The ability of general circulation models (GCMs) to reproduce the observed strong correlations of Eurasian snow extent in the fall to wave activity and Northern Annular Mode anomalies in the following winter is studied. The observed correlations have been hypothesized to involve two parts: a Rossby wave pulse generated in the troposphere in response to snow-forced surface cooling and a coup...

متن کامل

On the Role of Radiative Processes in Stratosphere–Troposphere Coupling

Climate change in the Southern Hemisphere (SH) polar stratosphere is associated with substantial changes in the atmospheric circulation that extend to the earth’s surface. The mechanisms that drive the changes in the SH troposphere are not fully understood, but most previous hypotheses have focused on the role of atmospheric dynamics rather than that of radiation. This study quantifies the radi...

متن کامل

Stratosphere–Troposphere Coupling in a Relatively Simple AGCM: Impact of the Seasonal Cycle

The seasonal time dependence of the tropospheric circulation response to polar stratospheric cooling in a simple atmospheric general circulation model is investigated. When the model is run without a seasonal cycle, polar stratospheric cooling induces a positive annular-mode response in the troposphere that takes a remarkably long time—several hundred days—to fully equilibrate. One is thus led ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004